We present a framework for detecting blue whale vocalisations from acoustic submarine recordings. The proposed methodology comprises three stages: i) a preprocessing step where the audio recordings are conditioned through normalisation, filtering, and denoising; ii) a label-propagation mechanism to ensure the consistency of the annotations of the whale vocalisations, and iii) a convolutional neural network that receives audio samples. Based on 34 real-world submarine recordings (28 for training and 6 for testing) we obtained promising performance indicators including an Accuracy of 85.4\% and a Recall of 93.5\%. Furthermore, even for the cases where our detector did not match the ground-truth labels, a visual inspection validates the ability of our approach to detect possible parts of whale calls unlabelled as such due to not being complete calls.
翻译:我们提出了一个从声波潜水艇录音中探测蓝鲸声响的框架,拟议方法包括三个阶段:(一) 通过正常化、过滤和去除音频录音的预处理步骤;(二) 确保鲸声响说明一致性的标签改进机制;(三) 接收音频样本的进化神经网络;根据34份真实世界潜艇记录(28份用于培训,6份用于测试),我们获得了有希望的性能指标,包括85.4 ⁇ 的准确度和93.5 ⁇ 的回调;此外,即使我们的探测器与地面真相标签不匹配的情况,一个直观检查也验证了我们探测可能未贴标签的鲸呼声部分的方法的能力,因为没有完全调用。