More than twenty years after its introduction, Annealed Importance Sampling (AIS) remains one of the most effective methods for marginal likelihood estimation. It relies on a sequence of distributions interpolating between a tractable initial distribution and the target distribution of interest which we simulate from approximately using a non-homogeneous Markov chain. To obtain an importance sampling estimate of the marginal likelihood, AIS introduces an extended target distribution to reweight the Markov chain proposal. While much effort has been devoted to improving the proposal distribution used by AIS, an underappreciated issue is that AIS uses a convenient but suboptimal extended target distribution. We here leverage recent progress in score-based generative modeling (SGM) to approximate the optimal extended target distribution minimizing the variance of the marginal likelihood estimate for AIS proposals corresponding to the discretization of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable, AIS procedures on a number of synthetic benchmark distributions and variational auto-encoders.
翻译:在采用这一方法20多年后,Annaaled Streaty Sampling(AIS)仍然是最有效的可能性估计方法之一,它依赖一系列分布序列,在可移动的初步分布和我们模拟的利息目标分布之间进行交叉,从大约使用非同质的Markov链条中进行。为了对边际可能性进行重要的抽样估计,AIS引入了扩大的目标分布,对Markov链提案进行重新加权。虽然已经为改进AIS使用的建议分配做出了大量努力,但一个未得到充分重视的问题是,AIS使用一种方便但不优化的扩展目标分布。我们在此利用最近基于分数的基因化模型(SGM)的进展,以接近最佳的扩展目标分布,最大限度地减少AIS建议中与Langevin和Hamiltonian动态分解相关的边际估计的边际可能性差异。我们展示了这些关于合成基准分布和变式自动编码的新颖的AIS程序。