Score based approaches to sampling have shown much success as a generative algorithm to produce new samples from a target density given a pool of initial samples. In this work, we consider if we have no initial samples from the target density, but rather $0^{th}$ and $1^{st}$ order oracle access to the log likelihood. Such problems may arise in Bayesian posterior sampling, or in approximate minimization of non-convex functions. Using this knowledge alone, we propose a Monte Carlo method to estimate the score empirically as a particular expectation of a random variable. Using this estimator, we can then run a discrete version of the backward flow SDE to produce samples from the target density. This approach has the benefit of not relying on a pool of initial samples from the target density, and it does not rely on a neural network or other black box model to estimate the score.
翻译:基于分数的取样方法显示,作为一种基因化算法,从目标密度中产生新的样本,取得了很大的成功。 在这项工作中,我们考虑我们是否没有目标密度的初始样本,但我们考虑的是,我们是否没有目标密度的初步样本,但是没有0.%th}美元和$1 ⁇ st}美元对日志可能性的订单。这些问题可能发生在巴伊西亚后方取样中,或者在将非凝固功能的大致最小化方面。我们仅利用这一知识,建议采用蒙特卡洛方法,将得分作为随机变量的特定预期,根据经验估算。我们然后利用这个估计器,可以运行一个离散的后向流SDE版本,从目标密度生成样本。这种方法的好处是,不依赖目标密度的初始样本集合,也不依靠神经网络或其他黑盒模型来估计得分数。