Since Facial Action Unit (AU) annotations require domain expertise, common AU datasets only contain a limited number of subjects. As a result, a crucial challenge for AU detection is addressing identity overfitting. We find that AUs and facial expressions are highly associated, and existing facial expression datasets often contain a large number of identities. In this paper, we aim to utilize the expression datasets without AU labels to facilitate AU detection. Specifically, we develop a novel AU detection framework aided by the Global-Local facial Expressions Embedding, dubbed GLEE-Net. Our GLEE-Net consists of three branches to extract identity-independent expression features for AU detection. We introduce a global branch for modeling the overall facial expression while eliminating the impacts of identities. We also design a local branch focusing on specific local face regions. The combined output of global and local branches is firstly pre-trained on an expression dataset as an identity-independent expression embedding, and then finetuned on AU datasets. Therefore, we significantly alleviate the issue of limited identities. Furthermore, we introduce a 3D global branch that extracts expression coefficients through 3D face reconstruction to consolidate 2D AU descriptions. Finally, a Transformer-based multi-label classifier is employed to fuse all the representations for AU detection. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art on the widely-used DISFA, BP4D and BP4D+ datasets.
翻译:由于法西行动股(AU)的注解要求有域内专长,共同的非盟数据集仅包含数量有限的主题。因此,对AU而言,一个关键的挑战就是身份识别过度。我们发现AU和面部表达方式高度关联,现有的面部表达式数据集往往包含大量身份。在本文中,我们的目标是利用没有AU标签的表达式数据集来帮助欧盟的检测。具体地说,我们开发了一个新型的非盟检测框架,由全球地方面部表达方式嵌入式,称为GLEEE-Net。我们的GLEE-Net由三个分支组成,为AU的检测提取独立身份表达方式特征特征特征。我们引入了一个全球分支,在消除身份影响的同时模拟总体面部表达方式。我们还设计了一个以特定地方脸部区域为重点的地方分支。全球和地方分支的综合输出首先经过培训后,将表达式数据集作为依赖身份的表达方式嵌入,然后对AU的数据集进行细化。因此,我们大幅缓解了有限身份问题。此外,我们引入了一个3D全球分支,在将总体面面面面部表示式表达式表达式表达式表达式表达方式,最终将AUGLILAFAFA的模型整合到AFAFAFA的模型进行所有测试。