The core is a dominant solution concept in economics and game theory. In this context, the following question arises, ``How versatile is this solution concept?'' We note that within game theory, this notion has been used for profit -- equivalently, cost or utility -- sharing only. In this paper, we show a completely different use for it: in an {\em investment management game}, under which an agent needs to allocate her money among investment firms in such a way that {\em in each of exponentially many future scenarios}, sufficient money is available in the ``right'' firms so she can buy an ``optimal investment'' for that scenario. We study a restriction of this game to {\em perfect graphs} and characterize its core. Our characterization is analogous to Shapley and Shubik's characterization of the core of the assignment game. The difference is the following: whereas their characterization follows from {\em total unimodularity}, ours follows from {\em total dual integrality}. The latter is another novelty of our work.


翻译:核心是经济学和游戏理论中的主要解决方案概念。在此背景下,出现以下问题:“这个解决方案概念有多多才多艺?”我们注意到,在游戏理论中,这个概念只用于利润 — — 等量、成本或效用 — — 共享。在本文中,我们展示了一种完全不同的用途:在投资管理游戏中,一个代理人需要在投资公司之间分配其资金,其方式是:在众多指数性未来情景中,每个指数性情景中的每个情景中, 都存在足够的资金, 在“权利”公司中, 我们有足够的资金, 这样她就可以为这个情景购买“最佳投资 ” 。 我们研究这个游戏的局限性, 以至于“ 优化图表 ” 和 其核心特征。 我们的特征类似于 Shapley 和 Shubik 对任务游戏核心的描述。 区别如下: 它们的定性取自于“ 整体单一组合性 ”, 而我们的特征则取自于“ 全部双重性 ” 。 后者是我们工作的另一个新颖性。

0
下载
关闭预览

相关内容

博弈论(Game theory)有时也称为对策论,或者赛局理论,应用数学的一个分支,目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月7日
Arxiv
83+阅读 · 2022年7月16日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员