The induced odd cycle packing number $iocp(G)$ of a graph $G$ is the maximum integer $k$ such that $G$ contains an induced subgraph consisting of $k$ pairwise vertex-disjoint odd cycles. Motivated by applications to geometric graphs, Bonamy et al.~\cite{indoc} proved that graphs of bounded induced odd cycle packing number, bounded VC dimension, and linear independence number admit a randomized EPTAS for the independence number. We show that the assumption of bounded VC dimension is not necessary, exhibiting a randomized algorithm that for any integers $k\ge 0$ and $t\ge 1$ and any $n$-vertex graph $G$ of induced odd cycle packing number at most $k$ returns in time $O_{k,t}(n^{k+4})$ an independent set of $G$ whose size is at least $\alpha(G)-n/t$ with high probability. In addition, we present $\chi$-boundedness results for graphs with bounded odd cycle packing number, and use them to design a QPTAS for the independence number only assuming bounded induced odd cycle packing number.


翻译:以G$为单位的诱发奇周期包装编号为 $iocp(G) $G$是最大整数 $k$,因此,$G$包含一个诱发子子图,由对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对。通过几何图的应用,Bonamy et al. ⁇ cite{indoc} 证明,捆绑的奇周期包装编号、捆绑的VC维度和线性独立号的图表中包含一个随机的EPTAS。我们显示,对受约束的VC维维维维维值的假设没有必要,而对于任何整值为$kge 0美元和$t\ge 1$t\ g$ 和任何一美元正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对正对方方方方方方方方方方方方方方方对方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方

0
下载
关闭预览

相关内容

【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Effective.Modern.C++ 中英文版,334页pdf
专知
26+阅读 · 2020年11月4日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】以新的角度思考从女人到母亲的转变
英语演讲视频每日一推
9+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
10+阅读 · 2021年11月3日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Effective.Modern.C++ 中英文版,334页pdf
专知
26+阅读 · 2020年11月4日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】以新的角度思考从女人到母亲的转变
英语演讲视频每日一推
9+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员