In this paper we use the theory of computing to study fractal dimensions of projections in Euclidean spaces. A fundamental result in fractal geometry is Marstrand's projection theorem, which shows that for every analytic set E, for almost every line L, the Hausdorff dimension of the orthogonal projection of E onto L is maximal. We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimensions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand's theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is not analytic. Our second result gives a lower bound on the packing dimension of projections of arbitrary sets. Finally, we give a new proof of Marstrand's theorem using the theory of computing.
翻译:在本文中,我们使用计算理论来研究欧几里德空间的预测的分形维度。分形几何的一个根本结果就是马斯特兰德的投影理论,它表明,对于每一个分析集E,几乎每一行L线的E,E对L的正方形投影的Hausdorf维度是最大的。我们用科尔莫戈洛夫的复杂度来给Hausdorf和正方形投影的包装维度提供两个新的结果。第一个显示,每当海斯多夫和包装维度就E集达成一致时,Marstrand的定理原理就维持在其中,即使E不具有分析性。我们的第二个结果为任意投影的包装维度提供了更低的界限。最后,我们用计算理论来证明Marstrand的定理。