We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability $p \in (0,1)$ and a cluster weight $q > 0$. We establish that for every $q\ge 1$, the random-cluster Glauber dynamics mixes in optimal $\Theta(n\log n)$ steps on $n$-vertex random graphs having a prescribed degree sequence with bounded average branching $\gamma$ throughout the full high-temperature uniqueness regime $p<p_u(q,\gamma)$. The family of random graph models we consider include the Erd\H{o}s--R\'enyi random graph $G(n,\gamma/n)$, and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on the Erd\H{o}s--R\'enyi random graphs that works for all $q$ in the full uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the maximum degree) for the Potts Glauber dynamics, in the same settings where our $\Theta(n \log n)$ bounds for the random-cluster Glauber dynamics apply. This reveals a significant computational advantage of random-cluster based algorithms for sampling from the Potts Gibbs distribution at high temperatures in the presence of high-degree vertices.
翻译:我们考虑从铁磁波和随机集成模型中抽样的问题,这些模型是通过随机集聚模型的 Glauber 动态,在随机集成模型的普通随机图表组别中,通过随机集成模型的Glauber 动态。随机集成模型以边缘概率 $ p = in (0,1美元) 和 Q = 美元 = 美元 = 美元。我们确定,对于每1 美元,随机集聚群集动态组合在美元(n\log n) 美元(n\log n) 上方随机的随机集成随机集成图组别中,具有一定度序列序列序列的随机集成模型,在全高温温度集集成系统中,用于在高温集成集成的快速集成计算结果,用于在高温集集集集成的Oqualalalal-ral-rmainal-ral-lation Exligialal Excial Exliversal Excial Excial 。