Traffic flow analysis is revolutionising traffic management. Qualifying traffic flow data, traffic control bureaus could provide drivers with real-time alerts, advising the fastest routes and therefore optimising transportation logistics and reducing congestion. The existing traffic flow datasets have two major limitations. They feature a limited number of classes, usually limited to one type of vehicle, and the scarcity of unlabelled data. In this paper, we introduce a new benchmark traffic flow image dataset called TrafficCAM. Our dataset distinguishes itself by two major highlights. Firstly, TrafficCAM provides both pixel-level and instance-level semantic labelling along with a large range of types of vehicles and pedestrians. It is composed of a large and diverse set of video sequences recorded in streets from eight Indian cities with stationary cameras. Secondly, TrafficCAM aims to establish a new benchmark for developing fully-supervised tasks, and importantly, semi-supervised learning techniques. It is the first dataset that provides a vast amount of unlabelled data, helping to better capture traffic flow qualification under a low cost annotation requirement. More precisely, our dataset has 4,402 image frames with semantic and instance annotations along with 59,944 unlabelled image frames. We validate our new dataset through a large and comprehensive range of experiments on several state-of-the-art approaches under four different settings: fully-supervised semantic and instance segmentation, and semi-supervised semantic and instance segmentation tasks. Our benchmark dataset will be released.
翻译:交通流量分析使交通流量管理发生革命性的变化。 测试交通流量数据, 交通管制局可以向司机提供实时警报, 为最快的路线提供咨询, 从而优化交通物流, 并减少拥堵。 现有的交通流量数据集有两大局限性。 它们有数量有限的等级, 通常限于一种车辆, 缺少未贴标签的数据。 在本文中, 我们引入了一个新的交通流量基准图像数据集, 称为交通流量。 我们的数据集分为两大要点。 首先, 交通管制局可以提供像素级和例级的语义标签, 以及大量类型的车辆和行人。 它由来自印度8个城市的街道上用固定相机记录的大量和多样的视频序列组成。 第二, 交通管制局的目标是建立一个新的基准, 开发完全监督的任务, 更重要的是, 半监督的学习技术。 这是第一个数据集, 提供大量未贴标签的数据, 帮助在低成本说明要求下更好地记录交通流量的标识。 更准确地说, 我们的数据设置有4个不同的视频路段, 我们的数据设置有4, 以不同的图像框架, 我们的跨域图框架有4, 我们的四级, 。