A high-order numerical method is developed for solving the Cahn-Hilliard-Navier-Stokes equations with the Flory-Huggins potential. The scheme is based on the $Q_k$ finite element with mass lumping on rectangular grids, the second-order convex splitting method, and the pressure correction method. The unique solvability, unconditional stability, and bound-preserving properties are rigorously established. The key to bound-preservation is the discrete $L^1$ estimate of the singular potential. Ample numerical experiments are performed to validate the desired properties of the proposed numerical scheme.
翻译:暂无翻译