Learning dexterous manipulation skills is a long-standing challenge in computer graphics and robotics, especially when the task involves complex and delicate interactions between the hands, tools and objects. In this paper, we focus on chopsticks-based object relocation tasks, which are common yet demanding. The key to successful chopsticks skills is steady gripping of the sticks that also supports delicate maneuvers. We automatically discover physically valid chopsticks holding poses by Bayesian Optimization (BO) and Deep Reinforcement Learning (DRL), which works for multiple gripping styles and hand morphologies without the need of example data. Given as input the discovered gripping poses and desired objects to be moved, we build physics-based hand controllers to accomplish relocation tasks in two stages. First, kinematic trajectories are synthesized for the chopsticks and hand in a motion planning stage. The key components of our motion planner include a grasping model to select suitable chopsticks configurations for grasping the object, and a trajectory optimization module to generate collision-free chopsticks trajectories. Then we train physics-based hand controllers through DRL again to track the desired kinematic trajectories produced by the motion planner. We demonstrate the capabilities of our framework by relocating objects of various shapes and sizes, in diverse gripping styles and holding positions for multiple hand morphologies. Our system achieves faster learning speed and better control robustness, when compared to vanilla systems that attempt to learn chopstick-based skills without a gripping pose optimization module and/or without a kinematic motion planner.
翻译:远程操作技能是计算机图形和机器人中长期存在的一项挑战,特别是当任务涉及手、工具和物体之间复杂和微妙的互动时。 在本文中,我们侧重于基于筷子的物体迁移任务,这是常见但要求很高的。 成功的筷子技能的关键是稳健地握住棍棒,这也支持微妙的动作。 我们自动发现由巴耶西亚优化和深强化学习(DRL) 构成的具有物理效力的筷子,它的工作是多种握式和手型态,而无需提供示例数据。 作为投入,我们侧重于基于筷子的控件配置和所希望移动的物件移动。 我们建造基于物理的手控控制器控制器,然后我们用基于物理的手动控制器控制器的动作和动作控制器, 将我们基于运动的动作控制器的动作控制器, 将我们基于运动的机动控制器的机动控制器, 将机动式控制器的机动控制器再通过移动式控制器的机动控制器进行。