Accident grouping is a crucial step in identifying accident-prone locations. Among the different accident grouping modes, clustering methods present excellent performance for discovering different distributions of accidents in space. This work introduces the Affinity Propagation Clustering (APC) approach for grouping traffic accidents based on criteria of similarity and dissimilarity between distributions of data points in space. The APC provides more realistic representations of the distribution of events from similarity matrices between instances. The results showed that when representative data samples obtain, the preference parameter of similarity provides the necessary performance to calibrate the model and generate clusters according to the desired characteristics. In addition, the study demonstrates that the preference parameter as a continuous parameter facilitates the calibration and control of the model's convergence, allowing the discovery of clustering patterns with less effort and greater control of the results
翻译:事故分类是确定事故易发地点的关键步骤,在不同的事故分类模式中,分组方法在发现空间事故的不同分布分布方面表现优异;这项工作根据空间数据点分布的相似性和差异性标准,引入了将交通事故分组的近亲促进集群(CPPC)办法,该办法根据空间数据点分布的相似性和差异性标准,对事故事件分布的分布提供了更为现实的描述,从不同实例的类似矩阵中提供了事件分布的描述;结果显示,在获得有代表性的数据样本时,相似的偏好参数为根据预期的特征校准模型和生成集群提供了必要的性能;此外,研究还表明,偏好参数作为连续参数有利于对模型的趋同进行校准和控制,从而能够以较少努力的方式发现集群模式,对结果进行更大程度的控制。