In various applied areas such as reliability engineering, molecular biology, finance, etc., the measure of uncertainty of a probability distribution plays an important role. In the present work, we consider the estimation of a function of the scale parameter, namely entropy of many exponential distributions having unknown and unequal location parameters with a common scale parameter. For this estimation problem, we have considered bowl-shaped location invariant loss functions. The inadmissibility of the minimum risk invariant estimator (MRIE) is proved by proposing a non-smooth improved estimator. Also, we have obtained a smooth estimator which improves upon the MRIE. As an application, we have obtained explicit expressions of improved estimators for two well-known loss functions namely squared error loss and linex loss. Further, we have shown that these estimators can be derived for other important censored sampling schemes. At first, we obtained the results for the complete and i.i.d. sample. We have seen that the results can be applied for (i) record values, (ii) type-II censoring, and (iii) progressive Type-II censoring. Finally, a simulation study has been carried out to compare the risk performance of the proposed improved estimators.
翻译:在可靠性工程、分子生物学、金融等各种应用领域,概率分布的不确定性的度量具有重要作用。在目前的工作中,我们考虑对比例参数的函数进行估计,即对许多具有未知和不平等位置参数且具有共同比例参数的指数分布,即具有未知和不平等位置参数,具有共同比例参数的许多指数分布的变异分布的变异分布的变异分布,我们考虑过这种估计问题,我们考虑的是碗形位置的变异损失功能。首先,我们通过提出一个非吸附式的改进估计器来证明无法承受最小风险。此外,我们获得了一个平稳的估测器,改进了MRIE。作为一种应用,我们获得了两种已知损失函数,即平方错误损失和线性损失的改良估计器的明确表达。此外,我们表明,这些估计器可用于其他重要的审查抽样计划。首先,我们获得了完整和一.一.d.抽样的结果。我们看到,结果可以应用于(一)记录值,(二)类型审查,以及(三)改进了MRIIE)和(三)升级的二审查者模拟结果。最后,进行了升级的二号检查。