In this paper, we present an automated parameter optimization method for trajectory generation. We formulate parameter optimization as a constrained optimization problem that can be effectively solved using Bayesian optimization. While the approach is generic to any trajectory generation method, we showcase it using optimization fabrics. Optimization fabrics are a geometric trajectory generation method based on non-Riemannian geometry. By symbolically pre-solving the structure of the tree of fabrics, we obtain a parameterized trajectory generator, called symbolic fabrics. We show that autotuned symbolic fabrics reach expert-level performance in a few trials. Additionally, we show that tuning transfers across different robots, motion planning problems and between simulation and real world. Finally, we qualitatively showcase that the framework could be used for coupled mobile manipulation.
翻译:在本文中,我们展示了一种轨道生成的自动参数优化方法。 我们将参数优化设计成一个限制优化的问题,可以用贝叶斯优化有效解决。 虽然该方法在任何轨道生成方法中都是通用的, 但我们用优化布料展示它。 优化布料是一种基于非里曼语几何学的几何轨道生成方法。 通过象征性地预先解决布料树的结构, 我们获得了一个参数化的轨道生成器, 称为象征性布料。 我们显示, 自动调制的象征性布料在少数试验中达到了专家一级的性能。 此外, 我们展示了不同机器人之间的调试、 运动规划问题以及模拟和真实世界之间的调试。 最后, 我们从质量上展示了框架可以用于同时移动操作。</s>