The model of incomplete cooperative games incorporates uncertainty into the classical model of cooperative games by considering a partial characteristic function. Thus the values for some of the coalitions are not known. The main focus of this paper is the class of 1-convex cooperative games under this framework. We are interested in two heavily intertwined questions. First, given an incomplete game, in which ways can we fill in the missing values to obtain a classical 1-convex game? Such complete games are called \emph{1-convex extensions}. For the class of minimal incomplete games (in which precisely the values of singletons and grand coalitions are known), we provide an answer in terms of a description of the set of 1-convex extensions. The description employs extreme points and extreme rays of the set. Second, how to determine in a rational, fair, and efficient way the payoffs of players based only on the known values of coalitions? Based on the description of the set of 1-convex extensions, we introduce generalisations of three solution concepts (values) for complete games, namely the $\tau$-value, the Shapley value and the nucleolus. We consider two variants where we compute the centre of gravity of either extreme games or of a combination of extreme games and extreme rays. We show that all of the generalised values coincide for minimal incomplete games which allows to introduce the \emph{average value}. For this value, we provide three different axiomatisations based on axiomatic characterisations of the $\tau$-value and the Shapley value for classical cooperative games. Finally, we turn our attention to \emph{incomplete games with defined upper vector}, asking the same questions and this time arriving to different conclusions. This provides a benchmark to test our tools and knowledge of the average value.
翻译:不完全的合作游戏模式通过考虑一个部分特性函数,将不确定性纳入合作游戏的经典模式。 因此, 一些联盟的值并不为人所知。 本文的主要焦点是在此框架下的 1 convex 合作游戏类别 。 我们感兴趣的是两个相互交织的问题 。 首先, 鉴于不完全的游戏, 我们如何填充缺失的值以获得经典的 1- convex 游戏? 这种完整的游戏被称为 \ emph{ 1- convex 扩展} 。 对于最不完全的游戏类别来说, 我们不清楚单子游戏和大联盟的值。 我们用一个描述 1 convex 扩展游戏的特性值来解答一个答案。 描述包含极大点和极点的极点。 其次, 如何以理性、 公平、 有效的方式确定玩家的回报, 仅以已知的联盟值为基础? 根据对 1 convevex 扩展的描述, 我们用三种不完全不完全的解决方案的值( 值), 即 $ deal- valyal- value) 的值、 Shapecial old 值和 exal coal ex cal coal 提供我们两个我们 的极值, 的数值, 我们的极值, 的数值, 和 。