The COVID-19 pandemic will be remembered as a uniquely disruptive period that altered the lives of billions of citizens globally, resulting in new-normal for the way people live and work. With the coronavirus pandemic, everyone had to adapt to the "work or study from home" operating model that has transformed our online lives and exponentially increased the use of cyberspace. Concurrently, there has been a huge spike in social media platforms such as Facebook and Twitter during the COVID-19 lockdown periods. These lockdown periods have resulted in a set of new cybercrimes, thereby allowing attackers to victimise users of social media platforms in times of fear, uncertainty, and doubt. The threats range from running phishing campaigns and malicious domains to extracting private information about victims for malicious purposes. This research paper performs a large-scale study to investigate the impact of lockdown periods during the COVID-19 pandemic on the security and privacy of social media users. We analyse 10.6 Million COVID-related tweets from 533 days of data crawling and investigate users' security and privacy behaviour in three different periods (i.e., before, during, and after lockdown). Our study shows that users unintentionally share more personal identifiable information when writing about the pandemic situation in their tweets. The privacy risk reaches 100% if a user posts three or more sensitive tweets about the pandemic. We investigate the number of suspicious domains shared in social media during different pandemic phases. Our analysis reveals an increase in suspicious domains during the lockdown compared to other lockdown phases. We observe that IT, Search Engines, and Businesses are the top three categories that contain suspicious domains. Our analysis reveals that adversaries' strategies to instigate malicious activities change with the country's pandemic situation.


翻译:COVID-19大流行将被视为一个独特的破坏性时期,它改变了全球数十亿公民的生活,导致人们的生活和工作方式出现新的正常状态。随着科罗纳病毒大流行,每个人都必须适应“在家工作或研究”的运作模式,改变了我们的在线生活,并大大增加了网络空间的使用。与此同时,Facebook和Twitter等社交媒体平台在COVID-19闭锁期期间出现大幅飙升。这些封锁期导致了一系列新的网络犯罪,从而导致袭击者在恐惧、不确定和怀疑的时期伤害社交媒体平台的用户。随着科罗纳病毒大流行的流行,各种威胁从开展可疑的搜索运动和恶意领域到为恶意目的获取关于受害者的私人信息。本研究论文进行了大规模研究,以调查COVID-19大流行期间锁定时间段对社会媒体用户安全和隐私的影响。我们分析了533天的数据流动和调查用户安全及隐私行为的10.6百万次相关推特,这三次不同时期(例如,之前、期间、之后和之后),我们不断进行搜索的运动和恶意媒体的域域域域域,这三次分析显示,我们的用户们在进行更隐私隐秘性分析时会更多地分享。

0
下载
关闭预览

相关内容

【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
105+阅读 · 2022年3月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
105+阅读 · 2022年3月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员