Twitter(推特)是一个社交网络及微博客服务的网站。它利用无线网络,有线网络,通信技术,进行即时通讯,是微博客的典型应用。

VIP内容

主题: TIMME-Twitter Ideology-detection via Multi-task Multi-relational Embedding

摘要: 跨平台帐户匹配在社交网络分析中起着重要作用,并且有利于广泛的应用。但是,现有方法要么严重依赖高质量的用户生成内容(包括用户配置文件),要么遭受数据不足的问题为了解决这一问题,我们提出了一种新颖的框架,该框架同时考虑了本地网络结构和超图结构上的多级图卷积。所提出的方法克服了现有工作的数据不足的问题,并且不必依赖于用户人口统计信息。此外,为了使所提出的方法能够处理大规模社交网络,我们提出了一种两阶段空间调节机制,以在基于网络分区的并行训练和不同社交网络上的帐户匹配中对齐嵌入空间。在两个大型的现实生活社交网络上进行了广泛的实验。实验结果表明,所提出的方法在很大程度上优于最新模型。

成为VIP会员查看完整内容
0
13

最新论文

Vaccine hesitancy has a long history but has been recently driven by the anti-vaccine narratives shared online, which significantly degrades the efficacy of vaccination strategies, such as those for COVID-19. Despite broad agreement in the medical community about the safety and efficacy of available vaccines, a large number of social media users continue to be inundated with false information about vaccines and, partly because of this, became indecisive or unwilling to be vaccinated. The goal of this study is to better understand anti-vaccine sentiment, and work to reduce its impact, by developing a system capable of automatically identifying the users responsible for spreading anti-vaccine narratives. We introduce a publicly available Python package capable of analyzing Twitter profiles to assess how likely that profile is to spread anti-vaccine sentiment in the future. The software package is built using text embedding methods, neural networks, and automated dataset generation. It is trained on over one hundred thousand accounts and several million tweets. This model will help researchers and policy-makers understand anti-vaccine discussion and misinformation strategies, which can further help tailor targeted campaigns seeking to inform and debunk the harmful anti-vaccination myths currently being spread. Additionally, we leverage the data on such users to understand what are the moral and emotional characteristics of anti-vaccine spreaders.

0
0
下载
预览
Top