In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
翻译:在本文中,我们研究了对麦肯-弗拉索夫(McKan-Vlasov)的某类差分方程进行半参数估计的问题。我们的目标是根据对相应粒子系统的观察,估计MV-SDE的漂移系数。我们建议采用半参数估计程序,并得出由此得出的估计值的趋同率。我们进一步证明,所获得的比率在微小意义上基本上是最佳的。