Accurate 3D object detection with LiDAR is critical for autonomous driving. Existing research is all based on the flat-world assumption. However, the actual road can be complex with steep sections, which breaks the premise. Current methods suffer from performance degradation in this case due to difficulty correctly detecting objects on sloped terrain. In this work, we propose Det6D, the first full-degree-of-freedom 3D object detector without spatial and postural limitations, to improve terrain robustness. We choose the point-based framework by founding their capability of detecting objects in the entire spatial range. To predict full-degree poses, including pitch and roll, we design a ground-aware orientation branch that leverages the local ground constraints. Given the difficulty of long-tail non-flat scene data collection and 6D pose annotation, we present Slope-Aug, a data augmentation method for synthesizing non-flat terrain from existing datasets recorded in flat scenes. Experiments on various datasets demonstrate the effectiveness and robustness of our method in different terrains. We further conducted an extended experiment to explore how the network predicts the two extra poses. The proposed modules are plug-and-play for existing point-based frameworks. The code is available at https://github.com/HITSZ-NRSL/De6D.
翻译:使用 LiDAR 进行精密的 3D 对象探测对于自主驾驶至关重要。 现有的研究都是基于平地假设的。 但是, 实际的道路可能非常复杂, 有陡峭的部分, 从而打破了这一前提。 目前的方法由于难以正确探测斜坡地形上的物体而出现性能退化。 在这项工作中, 我们提议使用Det6D, 这是第一个不受空间和姿势限制的自由度3D 物体探测仪, 以提高地形的稳健性能。 我们选择了基于点的框架, 建立它们在整个空间范围内探测物体的能力。 为了预测全度成份, 包括投放和滚动, 我们设计了一个地感测方向分支, 利用当地地面的限制。 鉴于长尾的非充气场数据收集困难, 6D 构成注释。 我们介绍Slope-Aug, 一种数据增强方法, 将现有非膨胀地形从平坦的数据集中合成。 各种数据集的实验显示我们在不同地形上的方法的有效性和稳健健度。 我们还进行了一个扩展的实验, 探索网络如何预测现有的RISL/ D 的顶模/ 。