We propose a Point-Voxel DeConvolution (PVDeConv) module for 3D data autoencoder. To demonstrate its efficiency we learn to synthesize high-resolution point clouds of 10k points that densely describe the underlying geometry of Computer Aided Design (CAD) models. Scanning artifacts, such as protrusions, missing parts, smoothed edges and holes, inevitably appear in real 3D scans of fabricated CAD objects. Learning the original CAD model construction from a 3D scan requires a ground truth to be available together with the corresponding 3D scan of an object. To solve the gap, we introduce a new dedicated dataset, the CC3D, containing 50k+ pairs of CAD models and their corresponding 3D meshes. This dataset is used to learn a convolutional autoencoder for point clouds sampled from the pairs of 3D scans - CAD models. The challenges of this new dataset are demonstrated in comparison with other generative point cloud sampling models trained on ShapeNet. The CC3D autoencoder is efficient with respect to memory consumption and training time as compared to stateof-the-art models for 3D data generation.


翻译:我们为 3D 数据自动解码器建议了一个点- Voxel Deconvolution (PVDeConv) 模块。 为了展示其效率, 我们学会合成高分辨率点云层, 共10千点, 高密度描述计算机辅助设计模型(CAD) 的基本几何。 扫描文物, 如外形、 缺失的部件、 平滑的边缘和孔, 必然出现在伪造 CAD 对象的真实的 3D 扫描中。 从 3D 扫描中学习原始 CAD 模型的构建需要与对应的 3D 对象扫描一起提供地面真实性。 为了解决空白, 我们引入了一个新的专用数据集, CC3D, 包含50k+ 双 CAD 模型及其对应的 3D 片断。 该数据集用于学习3D 扫描对象的点云的导出带的进动自动解码。 与 ShapeNet 培训的其他基因化点云采样模型相比, 新数据集的挑战得到了证明。 CC3D 自动解算器在记忆消耗和培训时间方面的效率, 与 3D 数据生成模型与 StateD 的模型比较。

0
下载
关闭预览

相关内容

《计算机辅助设计》是一份领先的国际期刊,为学术界和工业界提供有关计算机应用于设计的研究和发展的重要论文。计算机辅助设计邀请论文报告新的研究以及新颖或特别重要的应用,在广泛的主题中,跨越所有阶段的设计过程,从概念创造到制造超越。 官网地址:http://dblp.uni-trier.de/db/journals/cad/
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡点云时空】联合分割点云中的实例和语义
泡泡机器人SLAM
7+阅读 · 2019年4月27日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡点云时空】联合分割点云中的实例和语义
泡泡机器人SLAM
7+阅读 · 2019年4月27日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
Top
微信扫码咨询专知VIP会员