While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely under-explored, such as using machines to automatically generate high-quality 3D labels. Existing 3D object detectors fail to satisfy the high-quality requirement for offboard uses due to the limited input and speed constraints. In this paper, we propose a novel offboard 3D object detection pipeline using point cloud sequence data. Observing that different frames capture complementary views of objects, we design the offboard detector to make use of the temporal points through both multi-frame object detection and novel object-centric refinement models. Evaluated on the Waymo Open Dataset, our pipeline named 3D Auto Labeling shows significant gains compared to the state-of-the-art onboard detectors and our offboard baselines. Its performance is even on par with human labels verified through a human label study. Further experiments demonstrate the application of auto labels for semi-supervised learning and provide extensive analysis to validate various design choices.
翻译:虽然目前的三维物体识别研究主要侧重于实时、机上情景,但有许多在机外使用的看法案例,大多未得到充分探索,例如使用机器自动生成高质量的三维标签。现有的三维物体探测器由于输入和速度限制有限,未能满足机外使用的高质量要求。在本文中,我们建议使用点云序列数据在机外安装一个新的三维物体探测管道。观察不同的框架捕捉物体的互补观点,我们设计机外探测器,通过多框架物体探测和新颖的以物体为中心的精细化模型利用时间点。在Waymo Open数据集上评价,我们名为三维自动定位的管道显示与机上最先进的探测器和我们离机基线相比,取得了显著的成绩。其性能甚至与通过人类标签研究核实的人类标签相当。进一步实验显示将自动标签用于半超固的学习,并提供广泛的分析,以验证各种设计选择。