Fully machine translation scarcely guarantees error-free results. Humans perform post-editing on machine generated translations to correct errors in the scenario of computer aided translation. In favor of expediting the post-editing process, recent works have investigated machine translation in an interactive mode, where machines can automatically refine the rest of translations constrained on human's edits. In this paper, we utilize the parameterized objective function of neural machine translation and propose an easy constrained decoding algorithm to improve the translation quality without additional training. We demonstrate its capability and time efficiency on a benchmark dataset, WeTS, where it conditions on humans' guidelines by selecting spans with potential errors. In the experimental results, our algorithm is significantly superior to state-of-the-art lexically constrained decoding method by an increase of 10.37 BLEU in translation quality and a decrease of 63.4% in time cost on average. It even outperforms the benchmark systems trained with a large amount of annotated data on WeTS in English-German and German-English.
翻译:完全机器翻译几乎无法保证无误结果。 人类对机器生成的翻译进行编辑后修改, 以纠正计算机辅助翻译的错误。 为了加快编辑后进程, 最近的工程已经调查了互动模式的机器翻译, 机器可以自动地精炼受人类编辑限制的其余翻译。 在本文中, 我们使用神经机翻译的参数化客观功能, 并提议一个容易限制的解码算法来提高翻译质量, 而不接受额外培训。 我们在基准数据集WTS上展示了它的能力和时间效率, 通过选择有潜在错误的跨度来调节人类指南。 在实验结果中, 我们的算法大大优于最先进的法律限制解码方法, 其翻译质量增加了10.37 BLEU, 平均减少了63.4% 时间成本。 它甚至超越了经过大量英语和德语WTS附加说明的数据而培训的基准系统。