Biases in existing datasets used to train algorithmic decision rules can raise ethical and economic concerns due to the resulting disparate treatment of different groups. We propose an algorithm for sequentially debiasing such datasets through adaptive and bounded exploration in a classification problem with costly and censored feedback. Exploration in this context means that at times, and to a judiciously-chosen extent, the decision maker deviates from its (current) loss-minimizing rule, and instead accepts some individuals that would otherwise be rejected, so as to reduce statistical data biases. Our proposed algorithm includes parameters that can be used to balance between the ultimate goal of removing data biases -- which will in turn lead to more accurate and fair decisions, and the exploration risks incurred to achieve this goal. We analytically show that such exploration can help debias data in certain distributions. We further investigate how fairness criteria can work in conjunction with our data debiasing algorithm. We illustrate the performance of our algorithm using experiments on synthetic and real-world datasets.
翻译:用于培训算法决定规则的现有数据集中的比值可能会引起伦理和经济问题,因为由此产生的不同对待不同群体的结果不同。 我们提出一种算法,通过在分类问题中以昂贵和受审查的反馈进行适应性和约束性探索,从而按顺序降低这类数据集的偏差。 在这方面的探索意味着,有时,并且为了明智地选择,决策者偏离了其(当前)损失最小化规则,而是接受一些否则会被拒绝的个人,以减少统计数据偏差。我们提议的算法包括一些参数,这些参数可以用来平衡消除数据偏差的最终目标 -- -- 这反过来将导致更准确和公正的决定,以及实现这一目标的勘探风险。我们分析表明,这种探索可以帮助某些分布中的数据偏差。我们进一步调查公平标准如何与我们的数据偏差算法相结合。我们用合成和真实世界数据集的实验来说明我们的算法的运作情况。