Parallel search algorithms harness the multithreading capability of modern processors to achieve faster planning. One such algorithm is PA*SE (Parallel A* for Slow Expansions), which parallelizes state expansions to achieve faster planning in domains where state expansions are slow. In this work, we propose ePA*SE (Edge-based Parallel A* for Slow Evaluations) that improves on PA*SE by parallelizing edge evaluations instead of state expansions. This makes ePA*SE more efficient in domains where edge evaluations are expensive and need varying amounts of computational effort, which is often the case in robotics. On the theoretical front, we show that ePA*SE provides rigorous optimality guarantees. In addition, ePA*SE can be trivially extended to handle an inflation weight on the heuristic resulting in a bounded suboptimal algorithm w-ePA*SE (Weighted ePA*SE) that trades off optimality for faster planning. On the experimental front, we validate the proposed algorithm in two different planning domains: 1) motion planning for 3D humanoid navigation and 2) task and motion planning for a dual-arm robotic assembly task. We show that ePA*SE can be significantly more efficient than PA*SE and other alternatives. The open-source code for ePA*SE along with the baselines is available here: https://github.com/shohinm/parallel_search
翻译:平行搜索算法利用现代处理器的多读能力实现更快的规划。 其中一种算法是 PASE (Parallel A* 用于慢扩展), 它将州扩张同步, 以便在国家扩张缓慢的领域实现更快的规划。 在这项工作中, 我们提议 ePA*SE (基于Edge的平行平行 A* 用于慢评价), 通过平行进行边缘评估, 而不是国家扩展来改善 PASE 。 这样, 使 ePA*SE 在边缘评估费用昂贵并且需要不同数量计算努力的域中, ePA* 更有效率。 在理论方面, 我们显示 ePA* SEE提供严格的优化保证。 此外, ePA*SE可以微不足道地延伸, 处理超高的超额通胀权重, 导致一个连接的次级优化算法的 W-ePA* (Wighted ePA* ePA) 。 在实验方面, 我们验证了两个不同规划领域的拟议算法 :1 3D 人类导航和2) 任务和动作规划, 和动作规划比双层SEAAAAAAA* 更高效的SE- SEOAAADOADOD可以展示。