The stylistic properties of text have intrigued computational linguistics researchers in recent years. Specifically, researchers have investigated the Text Style Transfer (TST) task, which aims to change the stylistic properties of the text while retaining its style independent content. Over the last few years, many novel TST algorithms have been developed, while the industry has leveraged these algorithms to enable exciting TST applications. The field of TST research has burgeoned because of this symbiosis. This article aims to provide a comprehensive review of recent research efforts on text style transfer. More concretely, we create a taxonomy to organize the TST models and provide a comprehensive summary of the state of the art. We review the existing evaluation methodologies for TST tasks and conduct a large-scale reproducibility study where we experimentally benchmark 19 state-of-the-art TST algorithms on two publicly available datasets. Finally, we expand on current trends and provide new perspectives on the new and exciting developments in the TST field.
翻译:近年来,文本的文体特性引起了计算语言研究人员的兴趣。 具体而言,研究人员调查了文本样式转移(TST)的任务,其目的是改变文本的文体特性,同时保留其风格独立的内容。在过去几年里,开发了许多新的TST算法,而该行业则利用这些算法来促成令人兴奋的TST应用。TST研究领域由于这种共生关系而开始兴起。这篇文章旨在全面审查最近对文本样式转移的研究努力。更具体地说,我们创建了一个分类学,以组织TST模型,并全面概述艺术状况。我们审查了TST任务的现有评价方法,并进行了大规模复制研究,我们在这个研究中实验性地将19种最先进的TST算法基准放在两个公开提供的数据集上。最后,我们扩展了目前的趋势,并就TST领域新的和令人振奋人心的发展提供了新的视角。