Object pose increases intraclass object variance which makes object recognition from 2D images harder. To render a classifier robust to pose variations, most deep neural networks try to eliminate the influence of pose by using large datasets with many poses for each class. Here, we propose a different approach: a class-agnostic object pose transformation network (OPT-Net) can transform an image along 3D yaw and pitch axes to synthesize additional poses continuously. Synthesized images lead to better training of an object classifier. We design a novel eliminate-add structure to explicitly disentangle pose from object identity: first eliminate pose information of the input image and then add target pose information (regularized as continuous variables) to synthesize any target pose. We trained OPT-Net on images of toy vehicles shot on a turntable from the iLab-20M dataset. After training on unbalanced discrete poses (5 classes with 6 poses per object instance, plus 5 classes with only 2 poses), we show that OPT-Net can synthesize balanced continuous new poses along yaw and pitch axes with high quality. Training a ResNet-18 classifier with original plus synthesized poses improves mAP accuracy by 9% overtraining on original poses only. Further, the pre-trained OPT-Net can generalize to new object classes, which we demonstrate on both iLab-20M and RGB-D. We also show that the learned features can generalize to ImageNet.


翻译:使2D 图像中的对象识别更难。 为使分类器坚固, 以产生变异, 多数深神经网络试图通过使用大型数据集来消除外形的影响, 大型数据集在每类中配置很多。 在这里, 我们提出一种不同的方法: 类不可知天体构成变形网络( OPT- Net) 可以将图像转换成 3D 亚乌 和 投方轴, 以持续合成额外的外形。 同步图像可以更好地训练对象分类器。 我们设计了一个新的消除添加结构, 以明确区分对象身份中的外形: 首先消除输入图像的外形信息, 然后添加目标显示成形信息( 常规变形为连续变量) 以合成任何目标的外形。 我们训练了从 iLab-20M 数据集中拍摄的玩具飞行器图像。 在进行关于不平衡的离心器成像的训练后( 5个类为每件6个, 加上仅2个配置的5个类), 我们显示 OW- 网络可以将平衡的连续配置和高品质的外形轴组合。 在 Res18-20 + 组合中训练一个原始的图像中, 我们只能通过 学习 。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
基于深度学习的图像分析技术,116页ppt
专知会员服务
56+阅读 · 2020年7月17日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
专知会员服务
109+阅读 · 2020年3月12日
已删除
将门创投
7+阅读 · 2019年10月10日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
4+阅读 · 2020年3月27日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员