World-wide-web, with the website and webpage as the main interface, facilitates the dissemination of important information. Hence it is crucial to optimize them for better user interaction, which is primarily done by analyzing users' behavior, especially users' eye-gaze locations. However, gathering these data is still considered to be labor and time intensive. In this work, we enable the development of automatic eye-gaze estimations given a website screenshots as the input. This is done by the curation of a unified dataset that consists of website screenshots, eye-gaze heatmap and website's layout information in the form of image and text masks. Our pre-processed dataset allows us to propose an effective deep learning-based model that leverages both image and text spatial location, which is combined through attention mechanism for effective eye-gaze prediction. In our experiment, we show the benefit of careful fine-tuning using our unified dataset to improve the accuracy of eye-gaze predictions. We further observe the capability of our model to focus on the targeted areas (images and text) to achieve high accuracy. Finally, the comparison with other alternatives shows the state-of-the-art result of our model establishing the benchmark for the eye-gaze prediction task.


翻译:以网站和网页为主界面,通过万维网促进重要信息的传播。因此,必须优化它们,改善用户互动,这主要是通过分析用户的行为,特别是用户的视网膜位置。然而,收集这些数据仍被认为是人工和时间密集的。在这项工作中,我们能够开发自动的视网膜估计,作为网站截图的投入。这是通过整理一个统一的数据集来完成的,该数据集包括网站截图、视网膜热映像和网站布局信息,其形式为图像和文本面罩。我们预处理的数据集使我们能够提出一种有效的深层次学习模型,利用图像和文本空间位置,这种模型是通过有效视网膜预测的注意机制加以结合的。在我们的实验中,我们展示了利用我们的统一数据集进行仔细微调的好处,以提高眼网预测的准确性。我们进一步观察了我们的模型以目标区域(图像和文本)为重点实现高准确性的能力。我们预处理过的数据集使我们能够提出一个有效的深层次的基于学习的模型,利用图像和文字的空间位置。最后,通过我们其他选择的模型的进度基准预测显示我们确定结果的进度。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月25日
A Survey on Data Augmentation for Text Classification
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员