In this paper we present TreEnhance, an automatic method for low-light image enhancement capable of improving the quality of digital images. The method combines tree search theory, and in particular the Monte Carlo Tree Search (MCTS) algorithm, with deep reinforcement learning. Given as input a low-light image, TreEnhance produces as output its enhanced version together with the sequence of image editing operations used to obtain it. The method repeatedly alternates two main phases. In the generation phase a modified version of MCTS explores the space of image editing operations and selects the most promising sequence. In the optimization phase the parameters of a neural network, implementing the enhancement policy, are updated. After training, two different inference solutions are proposed for the enhancement of new images: one is based on MCTS and is more accurate but more time and memory consuming; the other directly applies the learned policy and is faster but slightly less precise. Unlike other methods from the state of the art, TreEnhance does not pose any constraint on the image resolution and can be used in a variety of scenarios with minimal tuning. We tested the method on two datasets: the Low-Light dataset and the Adobe Five-K dataset obtaining good results from both a qualitative and a quantitative point of view.


翻译:在本文中,我们展示了Treenhance, 这是一种提高数字图像质量的低光图像增强自动方法。 这种方法结合了树搜索理论, 特别是蒙特卡洛树搜索( MCTS) 算法, 以及深强化学习。 作为一种输入的低光图像, Treenhance 生成了其强化版, 以及用于获取图像编辑操作的顺序。 这个方法反复将两个主要阶段相交。 在生成阶段, 修改版的 MCTS 探索图像编辑操作的空间, 并选择最有希望的序列。 在优化阶段, 更新了神经网络的参数, 执行增强政策。 在培训后, 提出了两种不同的推论解决方案, 用于增强新图像: 一种基于 MCTS, 并且更加准确, 但时间和记忆消耗量; 另一种直接应用所学的政策, 并且更快, 比较不精确。 与艺术状态中的其他方法不同, TreEnhance 并不对图像解析造成任何制约, 并且可以用于各种最微调的情景中。 我们在两个数据集上测试了一种方法: 低光调和定量数据。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Markov Decision Process For Automatic Cyber Defense
Arxiv
0+阅读 · 2022年7月13日
Arxiv
0+阅读 · 2022年7月11日
Arxiv
0+阅读 · 2022年7月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员