Coronary CT Angiography (CCTA) is susceptible to various distortions (e.g., artifacts and noise), which severely compromise the exact diagnosis of cardiovascular diseases. The appropriate CCTA Vessel-level Image Quality Assessment (CCTA VIQA) algorithm can be used to reduce the risk of error diagnosis. The primary challenges of CCTA VIQA are that the local part of coronary that determines final quality is hard to locate. To tackle the challenge, we formulate CCTA VIQA as a multiple-instance learning (MIL) problem, and exploit Transformer-based MIL backbone (termed as T-MIL) to aggregate the multiple instances along the coronary centerline into the final quality. However, not all instances are informative for final quality. There are some quality-irrelevant/negative instances intervening the exact quality assessment(e.g., instances covering only background or the coronary in instances is not identifiable). Therefore, we propose a Progressive Reinforcement learning based Instance Discarding module (termed as PRID) to progressively remove quality-irrelevant/negative instances for CCTA VIQA. Based on the above two modules, we propose a Reinforced Transformer Network (RTN) for automatic CCTA VIQA based on end-to-end optimization. Extensive experimental results demonstrate that our proposed method achieves the state-of-the-art performance on the real-world CCTA dataset, exceeding previous MIL methods by a large margin.


翻译:冠状感应仪(CCTA)很容易受到各种扭曲(如人工制品和噪音),严重损害心血管疾病的准确诊断。适当的CCTA船级图像质量评估算法(CCTA VIQA)可用于降低错误诊断的风险。CCTAVIQA的主要挑战是,冠状腺局部部分决定最终质量很难找到。为了应对这一挑战,我们将CCTAVIQA作为多重深入学习(MIL)问题,并利用基于变压机的MIL主干线(称为T-MIL),将冠状中线上的多例合并为最终质量。然而,并非所有实例都可用于最终质量诊断的风险。有一些质量相关/负偏差的事例来影响准确的质量评估(例如,仅涵盖背景或情况下的冠状的事例无法识别)。因此,我们建议采用基于分级分级模块(作为PRID),逐步去除基于正态/内值的MIL主干边边端/内基边框,以前端变压的CCRTA VIA AS AS AS 常规级模型展示我们之前的变压式模型,用于前端变压的AS VIQ。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月6日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员