Public Policies are not intrinsically positive or negative. Rather, policies provide varying levels of effects across different recipients. Methodologically, computational modeling enables the application of multiple influences on empirical data, thus allowing for heterogeneous response to policies. We use a random forest machine learning algorithm to emulate an agent-based model (ABM) and evaluate competing policies across 46 Metropolitan Regions (MRs) in Brazil. In doing so, we use input parameters and output indicators of 11,076 actual simulation runs and one million emulated runs. As a result, we obtain the optimal (and non-optimal) performance of each region over the policies. Optimum is defined as a combination of GDP production and the Gini coefficient inequality indicator for the full ensemble of Metropolitan Regions. Results suggest that MRs already have embedded structures that favor optimal or non-optimal results, but they also illustrate which policy is more beneficial to each place. In addition to providing MR-specific policies' results, the use of machine learning to simulate an ABM reduces the computational burden, whereas allowing for a much larger variation among model parameters. The coherence of results within the context of larger uncertainty--vis-\`a-vis those of the original ABM--reinforces robustness of the model. At the same time the exercise indicates which parameters should policymakers intervene on, in order to work towards precise policy optimal instruments.


翻译:在方法上,计算模型能够对经验数据施加多重影响,从而允许对政策作出不同的反应。我们使用随机森林机学习算法来模仿一种以代理为基础的模型(ABM),并评价巴西46个大都会区(MRs)的竞争性政策。我们这样做时,我们使用投入参数和产出指标11 076个实际模拟运行和100万次模拟运行。因此,我们取得了每个区域对政策的最佳(和非最佳)业绩。最佳模型的定义是国内生产总值生产与都市地区全部集合的基尼系数不平等指标相结合。结果显示,MRs已经嵌入了有利于最佳或非最佳结果的结构,但它们也说明了哪些政策对每个地方更有利。除了提供MR特定的政策结果外,还利用机器学习模拟反弹道导弹,同时允许在模型参数之间发生更大的差异。在更大的不确定性和基尼系数不平等指标范围内,MRMRs已经将有利于最佳或非最佳结果,但是它们也说明了哪些政策对每个地方更有利。除了提供MSMR特定的政策结果外,还利用机器学习来模拟反弹道导弹的计算负担,同时允许在模型中作出更大程度的变异多的参数。在原的模型中,这些是,在精确的精确的模型中,使决策者具有稳性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月26日
Arxiv
0+阅读 · 2022年12月26日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员