Public Policies are not intrinsically positive or negative. Rather, policies provide varying levels of effects across different recipients. Methodologically, computational modeling enables the application of multiple influences on empirical data, thus allowing for heterogeneous response to policies. We use a random forest machine learning algorithm to emulate an agent-based model (ABM) and evaluate competing policies across 46 Metropolitan Regions (MRs) in Brazil. In doing so, we use input parameters and output indicators of 11,076 actual simulation runs and one million emulated runs. As a result, we obtain the optimal (and non-optimal) performance of each region over the policies. Optimum is defined as a combination of GDP production and the Gini coefficient inequality indicator for the full ensemble of Metropolitan Regions. Results suggest that MRs already have embedded structures that favor optimal or non-optimal results, but they also illustrate which policy is more beneficial to each place. In addition to providing MR-specific policies' results, the use of machine learning to simulate an ABM reduces the computational burden, whereas allowing for a much larger variation among model parameters. The coherence of results within the context of larger uncertainty--vis-\`a-vis those of the original ABM--reinforces robustness of the model. At the same time the exercise indicates which parameters should policymakers intervene on, in order to work towards precise policy optimal instruments.
翻译:在方法上,计算模型能够对经验数据施加多重影响,从而允许对政策作出不同的反应。我们使用随机森林机学习算法来模仿一种以代理为基础的模型(ABM),并评价巴西46个大都会区(MRs)的竞争性政策。我们这样做时,我们使用投入参数和产出指标11 076个实际模拟运行和100万次模拟运行。因此,我们取得了每个区域对政策的最佳(和非最佳)业绩。最佳模型的定义是国内生产总值生产与都市地区全部集合的基尼系数不平等指标相结合。结果显示,MRs已经嵌入了有利于最佳或非最佳结果的结构,但它们也说明了哪些政策对每个地方更有利。除了提供MR特定的政策结果外,还利用机器学习模拟反弹道导弹,同时允许在模型参数之间发生更大的差异。在更大的不确定性和基尼系数不平等指标范围内,MRMRs已经将有利于最佳或非最佳结果,但是它们也说明了哪些政策对每个地方更有利。除了提供MSMR特定的政策结果外,还利用机器学习来模拟反弹道导弹的计算负担,同时允许在模型中作出更大程度的变异多的参数。在原的模型中,这些是,在精确的精确的模型中,使决策者具有稳性能。