3D scenes photorealistic stylization aims to generate photorealistic images from arbitrary novel views according to a given style image while ensuring consistency when rendering from different viewpoints. Some existing stylization methods with neural radiance fields can effectively predict stylized scenes by combining the features of the style image with multi-view images to train 3D scenes. However, these methods generate novel view images that contain objectionable artifacts. Besides, they cannot achieve universal photorealistic stylization for a 3D scene. Therefore, a styling image must retrain a 3D scene representation network based on a neural radiation field. We propose a novel 3D scene photorealistic style transfer framework to address these issues. It can realize photorealistic 3D scene style transfer with a 2D style image. We first pre-trained a 2D photorealistic style transfer network, which can meet the photorealistic style transfer between any given content image and style image. Then, we use voxel features to optimize a 3D scene and get the geometric representation of the scene. Finally, we jointly optimize a hyper network to realize the scene photorealistic style transfer of arbitrary style images. In the transfer stage, we use a pre-trained 2D photorealistic network to constrain the photorealistic style of different views and different style images in the 3D scene. The experimental results show that our method not only realizes the 3D photorealistic style transfer of arbitrary style images but also outperforms the existing methods in terms of visual quality and consistency. Project page:https://semchan.github.io/UPST_NeRF.
翻译:3D 场景 摄影现实主义的Stylization 旨在根据特定风格图像根据特定风格的任意新观点生成符合真实现实的图像,同时确保从不同角度显示时的一致性。 一些现有的神经光亮场域的视觉化方法可以有效地通过将风格图像的特征与多视图图像结合起来来预测闪烁式场景。 然而, 这些方法生成了包含可反对的文物的新颖视图图像。 此外, 它们不能实现3D场景的全光现实化。 因此, 一个刻度图像必须重新对基于神经辐射场的 3D 场景代表网络进行重新配置。 我们提出一个新的 3D 直观质量的场景真实性风格转换框架来解决这些问题。 它可以实现具有真实性 3D 的场景风格转换框架与 2D 样图像相结合。 我们最初训练了 2D 真实性风格的图像传输网络, 能够满足任何特定内容图像和风格图像之间的光真实性传输。 然后, 我们只使用 voxel 功能优化一个 3D 场景, 并获得对场景的几何表达式展示的演示展示。 最后, 我们共同优化了一个超时端网络, 在图像样式中可以实现图像格式转换的图像格式中, 3Drealimimalimalimalimalimalimalimal 格式图像格式转换了一个不同的方法。