Recent advances in differentiable rendering have enabled high-quality reconstruction of 3D scenes from multi-view images. Most methods rely on simple rendering algorithms: pre-filtered direct lighting or learned representations of irradiance. We show that a more realistic shading model, incorporating ray tracing and Monte Carlo integration, substantially improves decomposition into shape, materials & lighting. Unfortunately, Monte Carlo integration provides estimates with significant noise, even at large sample counts, which makes gradient-based inverse rendering very challenging. To address this, we incorporate multiple importance sampling and denoising in a novel inverse rendering pipeline. This substantially improves convergence and enables gradient-based optimization at low sample counts. We present an efficient method to jointly reconstruct geometry (explicit triangle meshes), materials, and lighting, which substantially improves material and light separation compared to previous work. We argue that denoising can become an integral part of high quality inverse rendering pipelines.
翻译:最近在可变图像方面的进步使得能够从多视图图像中高质量地重建三维场景。 多数方法都依赖于简单的转换算法: 预先过滤的直接直接照明或学习的辐照表现。 我们表明,一个更现实的阴影模型,包括了射线追踪和蒙特卡洛集成,大大改善了成形、材料和照明的分解。 不幸的是,蒙特卡洛集成提供了大量噪音的估计数,即使是大面积的抽样也如此,这使得基于梯度的反向反向测算非常具有挑战性。 为了解决这个问题,我们在一个新的反向铺设管道中加入了多重重要取样和分解功能。 这极大地改进了趋同性,使低采样点的梯度优化得以实现。 我们提出了一个高效的方法,共同重建几何(清晰三角线)、材料和照明,大大改进了材料和光分解与以前的工作相比的特性和光分解。 我们争辩说,脱色可以成为高质量反向导管道的一个不可分割的部分。