We study the single-site Glauber dynamics for the fugacity $\lambda$, Hard-core model on the random graph $G(n, d/n)$. We show that for the typical instances of the random graph $G(n,d/n)$ and for fugacity $\lambda < \frac{d^d}{(d-1)^{d+1}}$, the mixing time of Glauber dynamics is $n^{1 + O(1/\log \log n)}$. Our result improves on the recent elegant algorithm in [Bezakova, Galanis, Goldberg Stefankovic; ICALP'22]. The algorithm there is a MCMC based sampling algorithm, but it is not the Glauber dynamics. Our algorithm here is simpler, as we use the classic Glauber dynamics. Furthermore, the bounds on mixing time we prove are smaller than those in Bezakova et al. paper, hence our algorithm is also faster. The main challenge in our proof is handling vertices with unbounded degrees. We provide stronger results with regard the spectral independence via branching values and show that the our Gibbs distributions satisfy the approximate tensorisation of the entropy. We conjecture that the bounds we have here are optimal for $G(n,d/n)$. As corollary of our analysis for the Hard-core model, we also get bounds on the mixing time of the Glauber dynamics for the Monomer-dimer model on $G(n,d/n)$. The bounds we get for this model are slightly better than those we have for the Hard-core model


翻译:我们用随机图形$G(n,d/n) 和fugaity $(d-1)++1+$(美元)来研究单点Glauber的动态。我们用随机图形$G(n,d/n) 和fugacle $(lambda) 的典型例子来研究Glauber的动态。我们用随机图形$G(n),d/n) 和forgacle $(d-1) d+1+$(美元),Glauber 的混合时间是$1+O(1/log\log n)$(美元) 。我们的主要挑战就是用无线度处理最近的精度算法。这里的算法是基于 MC 的抽样算法,但不是Glauber 。这里的算法比较简单,因为我们使用经典的Glauber 动态。此外,我们所证明的混合时间界限比Bezkova 和 al. 的模型要小,因此我们的算法也更快。我们的主要挑战就是用未界度的温度值来处理我们所处的螺旋值。 我们的硬值的模型, 我们用最硬的正的直值 显示的透的透的根的分数 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员