A robot operating in a household environment will see a wide range of unique and unfamiliar objects. While a system could train on many of these, it is infeasible to predict all the objects a robot will see. In this paper, we present a method to generalize object manipulation skills acquired from a limited number of demonstrations, to novel objects from unseen shape categories. Our approach, Local Neural Descriptor Fields (L-NDF), utilizes neural descriptors defined on the local geometry of the object to effectively transfer manipulation demonstrations to novel objects at test time. In doing so, we leverage the local geometry shared between objects to produce a more general manipulation framework. We illustrate the efficacy of our approach in manipulating novel objects in novel poses -- both in simulation and in the real world.
翻译:在一个家庭环境中操作的机器人将看到各种各样的独特和不熟悉的物体。 虽然一个系统可以对其中许多物体进行训练, 但无法预测机器人将看到的所有物体。 在本文中, 我们提出了一个方法, 将从有限的演示中获取的物体操纵技能推广到从看不见形状类别中获得的新型物体。 我们的方法, 本地神经描述器场( L- NDF), 使用天体本地几何定义的神经描述器, 有效地将操纵演示转移到测试时间的新物体。 我们这样做, 我们利用天体之间共享的本地几何法来生成一个更普遍的操纵框架。 我们用模拟和真实世界的方式, 展示了我们操纵新东西在新事物上( 模拟和新世界) 的效果 。