Understanding human perceptions presents a formidable multimodal challenge for computers, encompassing aspects such as sentiment tendencies and sense of humor. While various methods have recently been introduced to extract modality-invariant and specific information from diverse modalities, with the goal of enhancing the efficacy of multimodal learning, few works emphasize this aspect in large language models. In this paper, we introduce a novel multimodal prompt strategy tailored for tuning large language models. Our method assesses the correlation among different modalities and isolates the modality-invariant and specific components, which are then utilized for prompt tuning. This approach enables large language models to efficiently and effectively assimilate information from various modalities. Furthermore, our strategy is designed with scalability in mind, allowing the integration of features from any modality into pretrained large language models. Experimental results on public datasets demonstrate that our proposed method significantly improves performance compared to previous methods.
翻译:暂无翻译