This work explores learning agent-agnostic synthetic environments (SEs) for Reinforcement Learning. SEs act as a proxy for target environments and allow agents to be trained more efficiently than when directly trained on the target environment. We formulate this as a bi-level optimization problem and represent an SE as a neural network. By using Natural Evolution Strategies and a population of SE parameter vectors, we train agents in the inner loop on evolving SEs while in the outer loop we use the performance on the target task as a score for meta-updating the SE population. We show empirically that our method is capable of learning SEs for two discrete-action-space tasks (CartPole-v0 and Acrobot-v1) that allow us to train agents more robustly and with up to 60% fewer steps. Not only do we show in experiments with 4000 evaluations that the SEs are robust against hyperparameter changes such as the learning rate, batch sizes and network sizes, we also show that SEs trained with DDQN agents transfer in limited ways to a discrete-action-space version of TD3 and very well to Dueling DDQN.
翻译:这项工作探索学习代理- 不可知合成环境( SES) 以强化学习 。 SE 代表目标环境,使代理商能够比在目标环境上直接培训更高效地接受培训。 我们将此设计成双级优化问题, 并代表 SE 是一个神经网络。 通过使用自然进化战略和SE 参数矢量, 我们用在外环中, 将目标任务中的性能在内部环绕中培训代理商, 作为SE 人口元升级的分数。 我们从经验上表明, 我们的方法是能够学习 SE, 进行两个独立的行动空间任务( CartPole- V0 和 Acrobot- v1) 的 SE, 使我们能更强有力地培训代理商, 最多减少60 % 的步骤。 我们不仅在4000 的实验中显示, SE 能够抵御超度变化, 如学习率、 批量和网络大小等。 我们还表明, 受DQN 代理商培训的Ses 能够以有限的方式向TD3 和 CDDDDQ 。