Formal verse poetry imposes strict constraints on the meter and rhyme scheme of poems. Most prior work on generating this type of poetry uses existing poems for supervision, which are difficult to obtain for most languages and poetic forms. In this work, we propose an unsupervised approach to generate poems following any given meter and rhyme scheme, without requiring any poetic text for training. Our method works by splitting a regular, non-poetic corpus into phrases, prepending control codes that describe the length and end rhyme of each phrase, and training a transformer language model in the augmented corpus. During inference, we build control codes for the desired meter and rhyme scheme, and condition our language model on them to generate formal verse poetry. Experiments in Spanish and Basque show that our approach is able to generate valid poems, which are often comparable in quality to those written by humans.
翻译:正式诗歌对诗歌的节奏和押韵计划施加了严格的限制。 制作这类诗歌的大部分先前工作都使用现有的诗作作为监督工具,而大多数语言和诗歌形式都难以获得。 在这项工作中,我们提出一种不受监督的方法,按照任何特定的节奏和押韵计划来创作诗作,而不需要任何诗作培训。 我们的方法是将普通的、非诗作的文字分成几个词组,预先设置描述每个词组长度和结尾押韵的调控码,并在扩充版中培训一个变压器语言模型。 在推断中,我们为理想的节奏和押韵计划建立控制码,并将我们的语言模型作为制作正式诗作的条件。 西班牙语和巴斯克语的实验表明,我们的方法能够产生有效的诗作,这些诗的质量通常与人写的诗质相当。