We study worst-case guarantees on the expected return of fixed-dataset policy optimization algorithms. Our core contribution is a unified conceptual and mathematical framework for the study of algorithms in this regime. This analysis reveals that for naive approaches, the possibility of erroneous value overestimation leads to a difficult-to-satisfy requirement: in order to guarantee that we select a policy which is near-optimal, we may need the dataset to be informative of the value of every policy. To avoid this, algorithms can follow the pessimism principle, which states that we should choose the policy which acts optimally in the worst possible world. We show why pessimistic algorithms can achieve good performance even when the dataset is not informative of every policy, and derive families of algorithms which follow this principle. These theoretical findings are validated by experiments on a tabular gridworld, and deep learning experiments on four MinAtar environments.
翻译:我们研究固定数据集政策优化算法的预期回报最坏的保证。 我们的核心贡献是一个统一的概念和数学框架,用于研究这个制度中的算法。 这一分析表明,对于天真的方法,错误的值高估的可能性会导致难以满足的要求:为了保证我们选择接近最佳的政策,我们可能需要数据集能够丰富每项政策的价值。 为了避免这种情况,算法可以遵循悲观主义原则,即我们应该选择在最坏的世界中最理想地运作的政策。 我们证明悲观算法为什么即使在数据集不为每项政策提供信息的情况下也能取得良好的业绩,并得出遵循这一原则的算法系列。 这些理论结论通过在表格网格世界的实验和在四个明亚塔尔环境的深层次学习实验得到验证。