The Expected Improvement (EI) method, proposed by Jones et al. (1998), is a widely-used Bayesian optimization method, which makes use of a fitted Gaussian process model for efficient black-box optimization. However, one key drawback of EI is that it is overly greedy in exploiting the fitted Gaussian process model for optimization, which results in suboptimal solutions even with large sample sizes. To address this, we propose a new hierarchical EI (HEI) framework, which makes use of a hierarchical Gaussian process model. HEI preserves a closed-form acquisition function, and corrects the over-greediness of EI by encouraging exploration of the optimization space. We then introduce hyperparameter estimation methods which allow HEI to mimic a fully Bayesian optimization procedure, while avoiding expensive Markov-chain Monte Carlo sampling steps. We prove the global convergence of HEI over a broad function space, and establish near-minimax convergence rates under certain prior specifications. Numerical experiments show the improvement of HEI over existing Bayesian optimization methods, for synthetic functions and a semiconductor manufacturing optimization problem.
翻译:琼斯等人(1998年)提出的预期改进方法(EI)是一种广泛使用的巴伊西亚优化方法,它使用一个安装的高斯进程模型来高效黑箱优化黑箱优化,然而,EI的一个主要缺点是,它过度贪婪地利用合适的高斯进程模型来优化,这导致即使抽样规模大,也存在不理想的解决方案。为了解决这个问题,我们提议一个新的等级框架,即EI(HEI),它使用等级高斯进程模型。HEI保留一种封闭式获取功能,并通过鼓励探索优化空间来纠正EI的过度成熟性。我们随后采用了超参数估计方法,使HEI能够模拟完全的巴伊西亚优化程序,同时避免昂贵的马可夫-链蒙特卡洛取样步骤。我们证明HEI在广泛的功能空间上的全球趋同,并根据某些先前的规格建立近微量的趋同率。Numericalical实验显示HEI在合成功能和半导体制造问题方面对现有巴伊斯优化方法的改进。