Light field (LF) cameras record both intensity and directions of light rays, and encode 3D scenes into 4D LF images. Recently, many convolutional neural networks (CNNs) have been proposed for various LF image processing tasks. However, it is challenging for CNNs to effectively process LF images since the spatial and angular information are highly inter-twined with varying disparities. In this paper, we propose a generic mechanism to disentangle these coupled information for LF image processing. Specifically, we first design a class of domain-specific convolutions to disentangle LFs from different dimensions, and then leverage these disentangled features by designing task-specific modules. Our disentangling mechanism can well incorporate the LF structure prior and effectively handle 4D LF data. Based on the proposed mechanism, we develop three networks (i.e., DistgSSR, DistgASR and DistgDisp) for spatial super-resolution, angular super-resolution and disparity estimation. Experimental results show that our networks achieve state-of-the-art performance on all these three tasks, which demonstrates the effectiveness, efficiency, and generality of our disentangling mechanism. Project page: https://yingqianwang.github.io/DistgLF/.
翻译:光场( LF) 相机记录光线的强度和方向,并将三维场景编码为 4D LF 图像 。 最近, 提出了多种LF 图像处理任务 。 然而, CNN 有效处理 LF 图像是具有挑战性的, 因为空间和角信息高度交错, 差异不一。 在本文中, 我们提出一个通用机制, 将这些相配的信息分解为 LF 图像处理 。 具体地说, 我们首先设计一组特定域的共变组合, 将LF 从不同层面分解出来, 然后通过设计任务特定模块来利用这些分解的特性。 我们的不相联机制可以很好地将LF 结构预先纳入并有效地处理 4D LF 数据。 根据拟议机制, 我们开发了三个网络( 即 DistgSSR、 DistgASR 和 DistgDispip) 用于空间超分辨率、 角超分辨率和差异估计 。 实验结果显示我们的网络在所有这些特定模块/ disang page 上实现状态和艺术业绩 。