We present an improved post-quantum version of Sakalauskas matrix power function key-agreement protocol, using rectangular matrices instead the original square ones. Sakalauskas matrix power function is an efficient and secure way to generate a shared secret key, and using rectangular matrices can provide additional flexibility and security in some applications. This method reduces the computational complexity by allowing smaller random integers matrices while maintaining equal security. Another advantage of using the rank-deficient rectangular matrices over key agreement protocols is that it provides more protection against several linearization attacks.
翻译:我们提出了一种改进的后量子版本的Sakalauskas矩阵幂函数密钥协商协议,使用矩形矩阵代替原始的正方形矩阵。 Sakalauskas矩阵幂函数是一种有效且安全的生成共享秘密密钥的方法,使用矩形矩阵可以在某些应用中提供额外的灵活性和安全性。该方法通过允许更小的随机整数矩阵来减少计算复杂性,同时保持相等的安全性。使用秩亏矩形矩阵覆盖密钥协商协议的另一个优点是它提供更多保护来抵御多种线性化攻击。