Presence often is considered the most important quale describing the subjective feeling of being in a computer-generated (virtual) or computer-mediated environment. The identification and separation of two orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. In this model, immersion is a proposed contributing factor to the place illusion. Lately, copresence and social presence illusions have extended this model, and coherence was proposed as a contributing factor to the plausibility illusion. Such factors strive to identify (objectively) measurable characteristics of an experience, e.g., systems properties that allow controlled manipulations of VR experiences. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of Virtual, Augmented, and Mixed Reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion as a consequence of a plausible generation of spatial cues, and similarly for all of the current model's so-defined illusions. Finally, we propose coherence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects.


翻译:存在通常被认为是描述在计算机产生的(虚拟)或计算机中介环境中的主观感觉的最重大夸大。 识别和分离两种正正统存在组成部分(即,地点错觉和可信幻觉)是一个公认的理论模型,描述虚拟现实(VR)的经验已有一段时间了。 在这个模型中,沉浸是提出地方错觉的一个拟议因素。 最近,共性和社会存在幻觉扩展了这一模型,提出了一致性,作为造就假象的一个促进因素。 这些因素努力(客观地)确定和分离一种经验的可测量特征,例如,允许受控操纵VR经验的系统属性。 这个观点文章挑战了这种面向虚拟现实(VR)的理论。 首先,我们认为,一个地方错觉不能成为描述虚拟、放大和混合真实(VR、AR、M、或XR短时间)的更广泛范围的主要构思。 其次,我们提出,不存在可信的假象,而只是可以令人信服的,我们最终提出了一个稳定的空间错觉,成为了我们所定义的视觉和真实性最终结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员