In this short paper, we are considering the connection between the \emph{Residual Distribution Schemes} (RD) and the \emph{Flux Reconstruction} (FR) approach. We demonstrate that flux reconstruction can be recast into the RD framework and vice versa. Because of this close connection we are able to apply known results from RD schemes to FR methods. In this context we propose a first demonstration of entropy stability for the FR schemes under consideration and show how to construct entropy stable numerical schemes based on our FR methods. Simultaneously, we do not restrict the mesh to tensor structures or triangle elements, but rather allow polygons. The key of our analysis is a proper choice of the correction functions for which we present an approach here.
翻译:在此简短的文件中,我们考虑的是 \ emph{ Residual 分发计划} (RD) 和 \ emph{Flus Reformation} (FR) 方法之间的联系。 我们证明,通量重建可以重新纳入RD框架,反之亦然。 由于这种密切联系,我们能够将RD计划已知的结果应用到FR方法。 在这方面,我们提议对正在审议的FR 方案进行首次的增缩稳定性演示,并展示如何根据我们FR方法构建 entropy 稳定的数字方案。 同时,我们并不将网目局限于 shyroor 结构或三角元素,而是允许多边形。我们分析的关键是正确选择我们在此介绍的纠正功能。