Significant geometric structures can be compactly described by global wireframes in the estimation of 3D room layout from a single panoramic image. Based on this observation, we present an alternative approach to estimate the walls in 3D space by modeling long-range geometric patterns in a learnable Hough Transform block. We transform the image feature from a cubemap tile to the Hough space of a Manhattan world and directly map the feature to the geometric output. The convolutional layers not only learn the local gradient-like line features, but also utilize the global information to successfully predict occluded walls with a simple network structure. Unlike most previous work, the predictions are performed individually on each cubemap tile, and then assembled to get the layout estimation. Experimental results show that we achieve comparable results with recent state-of-the-art in prediction accuracy and performance. Code is available at https://github.com/Starrah/DMH-Net.
翻译:在从一个全景图像中估计 3D 房间布局时,全球电线框架可以简要地描述重要的几何结构。基于这一观察,我们提出了另一种办法,通过在可学习的Hough变形块中建模长距离几何模型模型来估计三维空间的墙壁。我们把图像特征从立方图图砖转换成曼哈顿世界的Hough空间,直接绘制几何输出的特征图。卷发层不仅学习当地坡度相似的线条特征,而且还利用全球信息成功地预测一个简单的网络结构所隐蔽的墙壁。与大多数以前的工作不同,预测是在每个立方图砖上单独进行,然后收集以获得布局估计。实验结果显示,我们在预测准确性和性能方面取得了与最新状态相近的结果。代码可在https://github.com/Starrah/DMH-Net上查阅。