Despite the promising results of machine learning models in malicious files detection, they face the problem of concept drift due to their constant evolution. This leads to declining performance over time, as the data distribution of the new files differs from the training one, requiring frequent model update. In this work, we propose a model-agnostic protocol to improve a baseline neural network against drift. We show the importance of feature reduction and training with the most recent validation set possible, and propose a loss function named Drift-Resilient Binary Cross-Entropy, an improvement to the classical Binary Cross-Entropy more effective against drift. We train our model on the EMBER dataset, published in2018, and evaluate it on a dataset of recent malicious files, collected between 2020 and 2023. Our improved model shows promising results, detecting 15.2% more malware than a baseline model.
翻译:暂无翻译