Pervasive cross-section dependence is increasingly recognized as a characteristic of economic data and the approximate factor model provides a useful framework for analysis. Assuming a strong factor structure where $\Lop\Lo/N^\alpha$ is positive definite in the limit when $\alpha=1$, early work established convergence of the principal component estimates of the factors and loadings up to a rotation matrix. This paper shows that the estimates are still consistent and asymptotically normal when $\alpha\in(0,1]$ albeit at slower rates and under additional assumptions on the sample size. The results hold whether $\alpha$ is constant or varies across factor loadings. The framework developed for heterogeneous loadings and the simplified proofs that can be also used in strong factor analysis are of independent interest.
翻译:普遍跨部门依赖性日益被确认为经济数据的一个特征,近似系数模型为分析提供了一个有用的框架。假设一个强大的因素结构,假设在这种结构中,$\Lop\Lo/N<unk> alpha$在美元=1美元的限度内是肯定的,早期工作确定了因素主要组成部分估计数的趋同,并加载到一个轮值矩阵。本文表明,当$\alpha\in(0.01)美元时,估计数仍然一致,且不那么正常,尽管其速度较慢,而且根据对抽样规模的额外假设。结果表明,美元是不变的,还是因不同因素负荷而有所不同。为各种因素设定的框架和可用于强因数分析的简化证据是独立的。</s>