Here we consider a problem of multiple measurement vector (MMV) compressed sensing with multiple signal sources. The observation model is motivated by the application of {\em unsourced random access} in wireless cell-free MIMO (multiple-input-multiple-output) networks. We present a novel (and rigorous) high-dimensional analysis of the AMP (approximate message passing) algorithm devised for the model. As the system dimensions in the order, say $\mathcal O(L)$, tend to infinity, we show that the empirical dynamical order parameters -- describing the dynamics of the AMP -- converge to deterministic limits (described by a state-evolution equation) with the convergence rate $\mathcal O(L^{-\frac 1 2})$. Furthermore, we have shown the asymptotic consistency of the AMP analysis with the replica-symmetric calculation of the static problem. In addition, we provide some interesting aspects on the unsourced random access (or initial access) for cell-free systems, which is the application motivating the algorithm.
翻译:暂无翻译