The optimal power flow (OPF) is a multi-valued, non-convex mapping from loads to dispatch setpoints. The variability of system parameters (e.g., admittances, topology) further contributes to the multiplicity of dispatch setpoints for a given load. Existing deep learning OPF solvers are single-valued and thus fail to capture the variability of system parameters unless fully represented in the feature space, which is prohibitive. To solve this problem, we introduce a diffusion-based OPF solver, termed \textit{DiffOPF}, that treats OPF as a conditional sampling problem. The solver learns the joint distribution of loads and dispatch setpoints from operational history, and returns the marginal dispatch distributions conditioned on loads. Unlike single-valued solvers, DiffOPF enables sampling statistically credible warm starts with favorable cost and constraint satisfaction trade-offs. We explore the sample complexity of DiffOPF to ensure the OPF solution within a prescribed distance from the optimization-based solution, and verify this experimentally on power system benchmarks.
翻译:最优潮流(OPF)是从负荷到调度设定点的多值、非凸映射。系统参数(如导纳、拓扑结构)的变异性进一步导致给定负荷下调度设定点的多样性。现有的深度学习OPF求解器均为单值模型,因此无法捕捉系统参数的变异性,除非在特征空间中完整表征所有参数,而这在计算上是不可行的。为解决该问题,本文提出一种基于扩散模型的OPF求解器(称为 \textit{DiffOPF}),将OPF问题视为条件采样问题。该求解器从运行历史数据中学习负荷与调度设定点的联合分布,并返回以负荷为条件的边际调度分布。与单值求解器不同,DiffOPF能够通过采样获得具有统计可信度的热启动方案,并在成本与约束满足之间实现更优权衡。本文探究了DiffOPF的样本复杂度,以确保OPF解与基于优化的解保持在预设距离内,并在电力系统基准测试中进行了实验验证。