Applying artificial intelligence to scientific problems (namely AI for science) is currently under hot debate. However, the scientific problems differ much from the conventional ones with images, texts, and etc., where new challenges emerges with the unbalanced scientific data and complicated effects from the physical setups. In this work, we demonstrate the validity of the deep convolutional neural network (CNN) on reconstructing the lattice topology (i.e., spin connectivities) in the presence of strong thermal fluctuations and unbalanced data. Taking the kinetic Ising model with Glauber dynamics as an example, the CNN maps the time-dependent local magnetic momenta (a single-node feature) evolved from a specific initial configuration (dubbed as an evolution instance) to the probabilities of the presences of the possible couplings. Our scheme distinguishes from the previous ones that might require the knowledge on the node dynamics, the responses from perturbations, or the evaluations of statistic quantities such as correlations or transfer entropy from many evolution instances. The fine tuning avoids the "barren plateau" caused by the strong thermal fluctuations at high temperatures. Accurate reconstructions can be made where the thermal fluctuations dominate over the correlations and consequently the statistic methods in general fail. Meanwhile, we unveil the generalization of CNN on dealing with the instances evolved from the unlearnt initial spin configurations and those with the unlearnt lattices. We raise an open question on the learning with unbalanced data in the nearly "double-exponentially" large sample space.
翻译:将人工智能应用于科学问题(即用于科学的AI)目前正处于激烈的争论之中。然而,科学问题与传统的图像、文本等不同,因为科学数据不平衡和物理设置的复杂影响都带来了新的挑战。在这项工作中,我们展示了深层革命神经网络(CNN)在重建结晶表层(即旋转连接)方面的有效性,因为存在强烈的热波动和不平衡的数据。以Glauber动态动态的动性Ising模型为例,CNN绘制了具有时间依赖性的当地磁场(一个试样的单一节点特征)的地图,从特定的初始配置(作为演化实例被淹没)到可能的组合的复杂影响。我们的计划与以前那些可能需要了解结晶的动态(即旋转连接连接),或者对诸如许多进化实例的开源或转移等相对数量的评估。CNNM(一个试样的)绘制了具有时间依赖性的本地磁场(一个试点)特征,从一个特定的初始配置(一个试样)演变中出现了新的挑战。从一个特定的初始结构(作为例)从一个试样)演变中演变中演变成,从一个特定的热调,从高温度的温度变化中可以避免由高温的温度变化中产生“无压的温度的上升, 与不断变化, 与整个的周期的周期的周期的变化数据在不断变化。