项目名称: 转子部件超高稳态加速度承载条件下动态特性优化研究

项目编号: No.51205027

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 王成林

作者单位: 北京物资学院

项目金额: 25万元

中文摘要: 随着航天、军事等领域的迅速发展,机械装置频繁在高加速度承载条件下运行,部分器件所承受加速度值已达到15万g(重力加速度),因此高加速度承载能力测试非常重要。利用高速旋转产生向心加速度原理进行超高稳态加速度承载实验是目前国家标准规定的、具有较强应用前景的实验方法,其中大质量固体超高加速度承载实验是该领域的难点问题。转子部件是该类实验系统的核心,其动态特性直接影响实验系统的测试能力和稳定性。本项目以影响转子动态特性的几何形状和制造误差为研究对象,综合数值计算算法和解析计算方法的优点,提出以协同算法为核心的转子部件优化建模与求解方法,探索复杂载荷作用条件下的形状优化方法。通过分析转子部件整体动态误差形成规律,揭示其对系统动态特性的作用机理,确立动态误差补偿策略,实现干扰因素的主动控制。搭建转子部件超高稳态加速度动态特性实验测试平台,分析转子部件对实验系统动态特性影响规律,为系统整体优化奠定基础。

中文关键词: 高加速度;动态特性;转子部件;动态误差;优化设计

英文摘要: With the rapid development of spaceflight and military, mechanical devices are used under the condition of high acceleration more frequently and the acceleration value of some parts has reached 150000g(Gravity acceleration).Thus, the bearing capacity test is very important. The experimental method of superhigh stable acceleration bearing capacity is endowed based on the principle that centripetal acceleration is created at high rotary speed and is stipulated by national standards. The superhigh stable acceleration bearing capacity experiment of a heavy mass is the difficult problems in the field. Rotor parts are the core of the experimental system, and the testing capacity and stabilization of the experimental system is affected by dynamic characteristics of rotor parts. The study object of the project is Shape optimization and dynamic error. The modeling techniques and computational methods about shape optimization with the core of the method is the synergetic algorithm is advanced by synthesizing the advantage of numerical calculation and analytical calculation, and the new shape optimization method under complex load is explored. The effect on system dynamic characteristics is revealed by analyzing the overall laws of the dynamic error formation mechanism. The compensation strategy of the dynamic error is

英文关键词: high acceleration;dynamic characteristics;rotor parts;dynamic error;optimal design

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
17+阅读 · 2022年4月25日
《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
67+阅读 · 2022年4月13日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
33+阅读 · 2021年9月14日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
16+阅读 · 2021年3月4日
专知会员服务
93+阅读 · 2021年1月24日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
59+阅读 · 2020年7月13日
人机对抗智能技术
专知会员服务
203+阅读 · 2020年5月3日
深度学习中的“不确定性基线”
TensorFlow
5+阅读 · 2021年12月7日
【仿真】国内外CAE软件的差距及自主路
产业智能官
32+阅读 · 2018年12月20日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月18日
Arxiv
0+阅读 · 2022年5月18日
Arxiv
0+阅读 · 2022年5月17日
Arxiv
0+阅读 · 2022年5月17日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
17+阅读 · 2022年4月25日
《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
67+阅读 · 2022年4月13日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
33+阅读 · 2021年9月14日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
16+阅读 · 2021年3月4日
专知会员服务
93+阅读 · 2021年1月24日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
59+阅读 · 2020年7月13日
人机对抗智能技术
专知会员服务
203+阅读 · 2020年5月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员